If you're seeing this message, it means we're having trouble loading external resources on our website.

Ha webszűrőt használsz, győződj meg róla, hogy a *.kastatic.org és a *.kasandbox.org nincsenek blokkolva.

Fő tartalom
Pontos idő:0:00Teljes hossz:6:02

Szögek összegének koszinuszára vonatkozó azonosság bizonyítása

Videóátirat

Az előző videóban bebizonyítottuk a szinusz szögfüggvényre vonatkozó addíciós tételt. Ebben a videóban pedig szeretném bebizonyítani a koszinuszra vonatkozó addíciós tételt. Tehát azt, hogy cos(x+y) egyenlő cos(x) szorozva cos(y), mínusz – ez mínusz lesz, ha a bal oldalon plusz van –, mínusz sin(x) szorozva sin(y). Hasonló módon fogom bizonyítani ezt is, mint ahogy a szinuszos videóban tettem, úgyhogy biztatnálak, hogy állítsd le a videót most, vagy amikor úgy érzed, hogy be tudnád fejezni a bizonyítást magadtól is. Tehát ahogyan a másik bizonyítást is kezdtük, mi is az x + y szög koszinusza ebben az ábrában? Az x + y az ez a szög itt alul. Az ADF derékszögű háromszöget vizsgáljuk. A koszinusz a szög MELLETTI befogó és az átfogó hányadosát jelenti, ez esetünkben az AF oldal osztva az átfogóval, és mivel az átfogó hossza 1, AF osztva eggyel az AF marad. Így a cos(x+y) az AF szakasz hossza lesz. Szóval ez itt lent egyenlő ezzel itt fent. Ezt ide is fogom írni. Másol és beilleszt. Szóval az AF szakasz hossza egyenlő cos(x+y)-nal. Gondoljuk át, hogyan juthatnánk el idáig! Úgy gondolkodok, hogy megnézem a többi derékszögű háromszöget az ábrán. Azokból majd eljutunk ehhez vagy az AF-hez. Leírom inkább... A kifejezés első része, ami egyenlő az AF szakasszal, az egyenlő lesz az AB szakasz, ami ez az egész szakasz itt alul, mínusz az FB szakasz, ami pedig ez itt. Már a koszinuszra vonatkozó addíciós képlet alakjából sejtheted, hogy mi lesz az AB és mi lesz az FB. Ha be tudjuk bizonyítani, hogy az AB egyenlő ezzel itt, és hogy az FB egyenlő ezzel itt, akkor készen is vagyunk, mert tudjuk, hogy a cos(x+y), ami az ábrán az AF, az egyenlő az AB mínusz FB-vel. Tehát a célunk az, hogy bebizonyítsuk, hogy ez valóban ennek a két tagnak a különbsége. Gondoljuk végig, hogy mik is ezek a szakaszok valójában! Mi is az AB? Nézzük meg az ACB derékszögű háromszöget! Az előző videóból tudjuk, hogy mivel az ADC háromszög átfogójának a hossza 1, így az AC az maga a cos(x). Akkor vajon mi lesz az AB? Lássuk csak! Az AB az y szög melletti oldal, vagy mondhatnánk úgy ‒ inkább itt folytatom lent ‒, szóval mondhatnánk, hogy cos(y) az egyenlő a mellette lévő oldal hossza, ami az AB szakasz, osztva az átfogóval, ami az ábra alapján cos(x). Mindkét oldalt megszorozva cos(x)-szel pedig megkapjuk, hogy az AB szakasz egyenlő cos(x)・cos(y)-nal. Ez pedig pontosan az, amit bizonyítani próbáltunk, tehát bebizonyítottuk, hogy az AB szakasz hossza az valóban egyenlő cos(x)・cos(y)-nal. Ez az egész szakasz egyenlő cos(x)・cos(y)-nal. Most már csak azt kell bizonyítanunk, hogy az FB szakasz egyenlő sin(x)・sin(y)-nal. Ez az FB szakasz egy elég furcsa szakasznak tűnik. Nem tartozik egyik derékszögű háromszöghöz sem, amit rajzoltam, aminek ismerjük valamelyik szögét. Az ábrán viszont látjuk, hogy az ECBF egy téglalap. Ezt a tényt használtuk a szinuszos addíciós tétel bizonyításakor is. Most is ezt fogjuk használni, mert látható, hogy az FB megegyezik az EC-vel. És az EC vajon mivel lesz egyenlő? Itt látjuk az y szöget, itt fent. Nézzük, mi lesz az y szöggel SZEMKÖZTI oldal? Itt már gondolhatjuk, hogy a szinusszal lesz dolgunk. Tudjuk, hogy sin(y), ami itt van fent, az egyenlő a szöggel SZEMKÖZTI befogó, ami az EC, osztva az átfogóval, ami pedig sin(x). Erre az előző videóban jöttünk rá úgy, hogy az x-szel szemközti befogó osztva az átfogóval az az x szög szinusza, és mivel az átfogó 1, a szöggel szemközti oldal az sin(x). Itt pedig, ha mindkét oldalt megszorozzuk sin(x)-szel, megkapjuk, amit kerestünk: EC = sin(x)・sin(y). És mivel az EC szakasz hossza ugyanakkora, mint az FB szakasz hossza, így azt is bebizonyítottuk, hogy az FB is egyenlő sin(x)・sin(y)-nal. Tehát hogy ez itt egyenlő ezzel. Összefoglalva tehát, a cos(x+y), ami megegyezikaz AF szakasszal, egyenlő az AB szakasz mínusz az FB szakasz, amiről bizonyítottuk, hogy úgy is írhatnánk, hogy AB egyenlő cos(x)・cos(y), mínusz FB, ami pedig sin(x)・sin(y). Ezzel végeztünk is.