If you're seeing this message, it means we're having trouble loading external resources on our website.

Ha webszűrőt használsz, győződj meg róla, hogy a *.kastatic.org és a *.kasandbox.org nincsenek blokkolva.

Fő tartalom

Snellius-Descartes-törvény példák 1.

Snellius-Descartes-törvény példák 1. Készítette: Sal Khan.

Szeretnél részt venni a beszélgetésben?

Még nincs hozzászólás.
Tudsz angolul? Kattints ide, ha meg szeretnéd nézni, milyen beszélgetések folynak a Khan Academy angol nyelvű oldalán.

Videóátirat

Ahogy ígértem, nézzünk néhány példát a Snellius-Descartes-törvényre! Tegyük fel, hogy van két közegem. Legyen ez itt levegő, itt pedig a felület. – Hadd rajzoljam egy megfelelőbb színnel!– Ez itt a víz felszíne. Szóval ez itt a vízfelszín. Tudom azt, hogy van egy beeső fénysugár, amelynek a beesési szöge – a merőlegeshez képes – 35 fok. És azt szeretném tudni, hogy mekkora lesz a törési szög. Tehát megtörik egy kicsit, közeledni fog a merőlegeshez kicsit, mivel a külső része kicsivel több ideig van a levegőben, ha a sárba belehajtó autó analógiáját vesszük. Tehát eltérül kicsit. És ezt az új szöget szeretnénk megkapni. A törési szöget akarom kiszámolni. Théta2-nek fogom nevezni. Mekkora lesz ez? Ez csupán a Snellius-Descartes-törvény alkalmazása. Azt a formát fogom használni, amely a törésmutatókra vonatkozik, mivel van itt egy táblázatunk a ck12.org FlexBook-ból a törésmutatókkal – ingyen beszerezheted, ha szeretnéd. Ebből megkapjuk, hogy az első közeg törésmutatója, – ami a levegő – a levegő törésmutatója szorozva a beesési szög szinuszával, esetünkben 35 fok, egyenlő lesz a víz törésmutatója szorozva ennek a szögnek a szinuszával – szorozva théta2 szinuszával. És tudjuk, hogy mekkora a levegő és a víz törésmutatója, innen már csak ki kell számolnunk a théta2 értékét. Tegyük azt! A levegő törésmutatója ez a szám itt, 1,00029 Tehát az lesz, hogy – három nulla van – 1,00029 szorozva 35 fok szinuszával, és ez egyenlő a víz törésmutatója, ami 1,33, tehát 1,33-szor szinusz théta2. Most az egyenlet mindkét oldalát eloszthatjuk 1,33-al. A jobb oldalon csak a szinusz théta2 marad, a bal oldalon segít majd a számológépünk. Hadd vegyem elő ezt a remek számológépet! Tehát ki szeretnénk számolni – és leellenőrzöm, hogy a számológép fok módra van beállítva – 1,00029 szorozva 35 fok szinusza, ez lesz a számláló itt a bal oldalon, – a zöld rész – ami 0,5737, osztva 1,33-al. Csak elosztom a nevezővel. Amikor a választ (Ans) osztod, az a legutóbbi művelet eredményét jelöli, tehát a számlálót osztottam a nevezővel, és 0,4314-et kaptam. Egy kicsit kerekítek rajta. Tehát azt kaptam, – színt cserélek – hogy 0,4314 egyenlő szinusz théta2. És most ahhoz, hogy megkapjuk a thétát, a szinusz-függvény inverzét kell alkalmaznunk mindkét oldalra. Tehát azt kapod, hogy inverz szinusz... Ez nem azt jelenti, hogy szinusz a mínusz 1.-en. Arkusz-szinuszt is írhatnék. Inverz szinusz 0,4314 egyenlő lesz, szinusznak az inverz szinusza magával a szöggel lesz egyenlő. Legalábbis amikor normál skálájú szögekkel dolgozunk, akkor mindig magával a szöggel lesz egyenlő, és ez erre a szögre is igaz. Ha bármi ezek közül zavaros lenne, érdemes átnézned a szinusz- és koszinusz-függvény inverzéről készült videókat. A trigonometria fejezetben találod őket. De viszonylag könnyen kiszámolhatjuk a szinusz inverzét ebben az esetben. Ez itt ugye szinusz, ha viszont megnyomod a másod (2nd) gombot, a szinusz inverzét kapod. Tehát inverz szinusza, vagy arkusz szinusza ennek a számnak. Ahelyett, hogy újra begépelném, előbb a másod (2nd), majd a válasz (Ans) gomb. Tehát ennek a számnak az inverz szinuszát veszem. Épp ezt csinálom itt, és egy szöget fogok kapni. Mégpedig 25,55-öt, vagy kerekítve 25,6 fokot. Tehát ez a théta2 egyenlő lesz 25,6-del, vagy legalábbis körülbelül 25,6 fokkal. Tehát a Snellius-Descartes-törvény ugyanazt adja, mint a sárba belehajtó autó analógiánk. Vagyis egy kisebb szöget kapunk, befele térül el, közelebb a merőlegeshez. És théta2 25,6 fokkal lesz egyenlő. És ezt meg lehet csinálni fordított irányban is. Nézzünk egy másik példát! Tegyük fel, hogy van nekünk egy... – az egyszerűség kedvéért – van itt egy felületünk. Ez itt valamilyen ismeretlen anyag. Épp az űrben vagyunk, egy űrhajón utazunk, ez tehát vákuum, vagy legalábbis vákuum közeli. És a fény ilyen szögben érkezik. Hadd tegyek egy merőlegest ide. Tehát valamilyen szögben érkezik. Habár, tegyük kicsit érdekesebbé. Jöjjön a fény a lassúbb közegből és haladjon tovább a gyorsabb közegbe! Csak mert az előző esetben a gyorsabból mentünk a lassúba. Tehát vákuumban van. Tegyük fel, hogy így halad a fény. És még egyszer, csak hogy megértsük, hogy befelé vagy kifelé törik meg a fény, a bal oldala fog hamarabb kijutni, vagyis először az fog gyorsabban haladni. Tehát közelíteni fog a felülethez, amikor átér a gyorsabb közegbe. Ez ugyebár egy ismeretlen anyag, valamilyen ismeretlen közeg, ahol a fény lassabban halad. És tegyük fel, hogy képesek vagyunk lemérni a szögeket. Hadd rajzoljak ide egy merőlegest! Tegyük fel, hogy ez itt 30 fok. És tételezzük fel, hogy képesek vagyunk mérni a törési szöget. És itt a törési szög mondjuk legyen 40 fok. Tehát feltéve, hogy képesek vagyunk mérni a beesési és a törési szögeket, ki tudjuk-e számolni a törésmutatóját ennek az anyagnak? Vagy még jobb: meg tudjuk-e kapni, hogy a fény mekkora sebességgel terjed ebben az anyagban? Nézzük először a törésmutatót! Tudjuk tehát, hogy ennek a titokzatos anyagnak a törésmutatója szorozva a 30 fok szinuszával egyenlő lesz a vákuum törésmutatója – ami a vákuumbeli fénysebesség– osztva a vákuumbeli fénysebességgel. Ami ugye 1-et ad. Ez ugyanaz, mint a vákuum n-je, ezért ide csak 1-et írok – szorozva 40 fok szinuszával, szorozva 40 fok szinuszával. Ha most meg akarjuk kapni az ismeretlen törésmutatót, akkor csak el kell osztanunk mindkét oldalt 30 fok szinuszával. Tehát az ismeretlen törésmutatónk a következő lesz: itt ugye marad a szinusz 40 fok osztva 30 fok szinuszával. Most elővehetjük az ügyes számológépünket. Tehát szinusz 40 osztva szinusz 30 fok. Bizonyosodj meg, hogy fok módba van állítva. És azt kapod, hogy – kerekítsünk – 1,29. Tehát ez nagyjából egyenlő, vagyis az ismeretlen anyagunk törésmutatója egyenlő 1,29-dal. Tehát ki tudtuk számolni a törésmutatót. És ezt most felhasználhatjuk arra, hogy kiszámoljuk a fény sebességét ebben az anyagban. Mert ne feledd, hogy ez az ismeretlen törésmutató egyenlő a vákuumbeli fénysebesség, ami 300 millió méter másodpercenként, osztva a fény anyagbeli sebességével. Tehát 1,29 egyenlő lesz a vákuumbeli fénysebesség, – ide írhatjuk a 300 millió méter per másodpercet – osztva az ismeretlen sebességgel, ami erre az anyagra jellemző. Teszek ide egy kérdőjelet. Most megszorozhatjuk mindkét oldalt az ismeretlen sebességgel. – Kifogyok a helyből itt. Sok minden van már ide írva. – Tehát megszorozhatom mindkét oldalt v sebességgel, és azt kapom, hogy 1,29-szer ez a kérdőjeles v egyenlő lesz 300 millió méter másodpercenként. És most eloszthatom mindkét oldalt 1,29-dal. v kérdőjel egyenlő lesz ezzel az egésszel, 300 millió osztva 1,29. Vagy úgy is fogalmazhatnánk, hogy a fény 1,29-szer gyorsabb vákuumban, mint ebben az anyagban itt. Számoljuk ki ezt a sebességet! Ebben az anyagban tehát a fény lassú lesz – 300 millió osztva 1,29-el. A fénynek egy nagyon lassú, 232 millió méter per szekundumos sebessége lesz. Ez tehát körülbelül, csak hogy összegezzük, 232 millió méter per szekundum. És, ha ki szeretnéd találni, hogy mi is ez az anyag. én csak kitaláltam ezeket a számokat, de nézzük van-e olyan anyag, aminek a törésmutatója 1,29 közeli. Ez itt elég közel van a 1,29-hez. Ez tehát valamiféle vákuum és víz találkozási felülete, ahol a víz az alacsony nyomás ellenére valamiért nem párolog el. De lehet akár más anyag is. Legyen inkább így, talán valami tömör anyag. Akárhogy is, ez két remélhetőleg egyszerű feladat volt a Snellius-Descartes-törvényre. A következő videóban egy kicsit bonyolultabbakat fogunk megnézni.